We've Come a Long Way Once again we are proud to present our annual water quality report covering the period between January 1 and December 31, 2016. In a matter of only a few decades, drinking water has become exponentially safer and more reliable than at any other point in human history. Our exceptional staff continues to work hard every day—at any hour—to deliver the highest-quality drinking water without interruption. Although the challenges ahead are many, we feel that by relentlessly investing in customer outreach and education, new treatment technologies, system upgrades, and training, the payoff will be reliable, high-quality tap water delivered to you and your family. Please remember that we are always available to assist you should you ever have any questions or concerns about your water. # Important Health Information Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as those with cancer undergoing chemotherapy, those who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or http://water.epa.gov/drink/hotline. # The Staff of the Manistee Water Department Jeff Mikula, Director of Public Works Rick Mohr, Deputy Director of Utilities Bruce Banks, Lead Operator Kathie Boyle, Administrative Assistant Kelly McColl, Utility Billing James Riley, Water Serviceman Sean Taylor, Water Serviceman # Where Does My Water Come From? The City of Manistee customers are fortunate because we enjoy an abundant water supply. Our water source is groundwater from two natural aquifers. Four large water wells pump the water to two 500,000-gallon water towers. In 2016 we pumped 324,874,000 gallons of water. #### Source Water Assessment Assurce Water Assessment Plan (SWAP) is now available at our office. This plan is an assessment of the delineated area around our listed sources through which contaminants, if present, could migrate and reach our source water. It also includes an inventory of potential sources of contamination within the delineated area, and a determination of the water supply's susceptibility to contamination by the identified potential sources. According to the Source Water Assessment Plan, our water system had a susceptibility rating of "high." If you would like to review the Source Water Assessment Plan, please feel free to contact our office during regular office hours. # **QUESTIONS?** For more information about this report, or your drinking water, please contact Jeff Mikula, Public Works Director, at (231) 723-7132 or by writing to this address: 70 Maple Street, Manistee, MI 49660. We want our valued customers to be informed about their water utility. For more information about safe drinking water, visit the U.S. Environmental Protection Agency at www.epa.gov/safewater/ or DEQ at www.michigan.gov/water. We will update this report annually and will keep you informed of any problems that may occur throughout the year, as they happen. Copies of this report are available at the DPW Garage, City Hall, and various other public locations. # **Protecting Your Water** Bacteria are a natural and important part of our world. There are around 40 trillion bacteria living in each of us; without them, we would not be able to live healthy lives. Coliform bacteria are common in the environment and are generally not harmful themselves. The presence of this bacterial form in drinking water is a concern, however, because it indicates that the water may be contaminated with other organisms that can cause disease. In 2016, the U.S. EPA passed a new regulation called the Revised Total Coliform Rule, which requires additional steps that water systems must take in order to ensure the integrity of the drinking water distribution system by monitoring for the presence of bacteria like total coliform and *E. coli*. The rule requires more stringent standards than the previous regulation, and it requires water systems that may be vulnerable to contamination to have in place procedures that will minimize the incidence of contamination. Water systems that exceed a specified frequency of total coliform occurrences are required to conduct an assessment of their system and correct any problems quickly. The U.S. EPA anticipates greater public health protection under the new regulation due to its more preventive approach to identifying and fixing problems that may affect public health. Though we have been fortunate to have the highestquality drinking water, our goal is to eliminate all potential pathways of contamination into our distribution system, and this new rule helps us to accomplish that goal. #### Water Treatment Process The City of Manistee treats your water using phosphate and chlorine to remove or reduce harmful contaminants that may come from the source water. Fluoride is added to promote strong teeth in children. Our Wellhead Protection Program was started in 1996. The basic premise of the plan is to keep our water supply safe from contamination. A copy of the source water protection plan, which is available at the Department of Public Works, 280 Washington Street, provides more information such as potential sources of contamination. The City has an updated copy of our Wellhead Protection Plan completed in 2015 in our office. #### Substances That Could Be in Water To ensure that tap water is safe to drink, the U.S. EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water that must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk. The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals, in some cases, radioactive material, and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include: **Microbial Contaminants**, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife; **Inorganic Contaminants**, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming; **Pesticides and Herbicides**, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; **Organic Chemical Contaminants**, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and may also come from gas stations, urban stormwater runoff, and septic systems; **Radioactive Contaminants**, which can be naturally occurring or may be the result of oil and gas production and mining activities. For more information about contaminants and potential health effects, call the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791. # Tip Top Tap The most common signs that your faucet or sink is affecting the quality of your drinking water are discolored water, sink or faucet stains, a buildup of particles, unusual odors or tastes, and a reduced flow of water. The solutions to these problems may be in your hands. #### Kitchen Sink and Drain Hand washing, soap scum buildup, and the handling of raw meats and vegetables can contaminate your sink. Clogged drains can lead to unclean sinks and backed-up water in which bacteria (e.g., pink and black slime) can grow and contaminate the sink area and faucet, causing a rotten egg odor. Disinfect and clean the sink and drain area regularly. Also, flush regularly with hot water. #### Faucets, Screens, and Aerators Chemicals and bacteria can splash and accumulate on the faucet screen and aerator, which are located on the tip of faucets and can collect particles like sediment and minerals, resulting in a decreased flow from the faucet. Clean and disinfect the aerators or screens on a regular basis. Check with your plumber if you find particles in the faucet screen as they could be pieces of plastic from the hot water heater dip tube. Faucet gaskets can break down and cause black, oily slime. If you find this slime, replace the faucet gasket with a higher-quality product. White scaling or hard deposits on faucets and shower heads may be caused by hard water or water with high levels of calcium carbonate. Clean these fixtures with vinegar or use water softening to reduce the calcium carbonate levels for the hot water system. #### Water Filtration and Treatment Devices A smell of rotten eggs can be a sign of bacteria on the filters or in the treatment system. The system can also become clogged over time, so regular filter replacement is important. (Remember to replace your refrigerator filter!) #### What's a Cross-Connection? Cross-connections that contaminate drinking water distribution lines are a major concern. A cross-connection is formed at any point where a drinking water line connects to equipment (boilers), systems containing chemicals (air conditioning systems, fire sprinkler systems, irrigation systems), or water sources of questionable quality. Cross-connection contamination can occur when the pressure in the equipment or system is greater than the pressure inside the drinking water line (backpressure). Contamination can also occur when the pressure in the drinking water line drops due to fairly routine occurrences (main breaks, heavy water demand), causing contaminants to be sucked out from the equipment and into the drinking water line (backsiphonage). Outside water taps and garden hoses tend to be the most common sources of cross-connection contamination at home. The garden hose creates a hazard when submerged in a swimming pool or when attached to a chemical sprayer for weed killing. Garden hoses that are left lying on the ground may be contaminated by fertilizers, cesspools, or garden chemicals. Improperly installed valves in your toilet could also be a source of cross-connection contamination. Community water supplies are continuously jeopardized by cross-connections unless appropriate valves, known as backflow prevention devices, are installed and maintained. We have surveyed industrial, commercial, and institutional facilities in the service area to make sure that potential cross-connections are identified and eliminated or protected by a backflow preventer. We also inspect and test backflow preventers to make sure that they provide maximum protection. For more information on backflow prevention, contact the Safe Drinking Water Hotline at (800) 426-4791. # Lead in Home Plumbing If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/lead. # Community Participation You can attend regularly scheduled City Council meetings on the first and third Tuesdays of each month at 7:00 p.m. in the City Hall Council Chambers, Third Floor, at 70 Maple Street. # What type of container is best for storing water? Consumer Reports has consistently advised that glass or BPA-free plastics such as polyethylene are the safest choices. To be on the safe side, do not use any container with markings on the recycle symbol showing "7 PC" (code for BPA). You could also consider using stainless steel or aluminum with BPA-free liners. # How much emergency water should I keep? Typically, 1 gallon per person per day is recommended. For a family of four, that would be 12 gallons for 3 days. Humans can survive without food for 1 month, but can survive only 1 week without water. # How long can I store drinking water? The disinfectant in drinking water will eventually dissipate, even in a closed container. If that container housed bacteria before it was filled with tap water, the bacteria may continue to grow once the disinfectant has dissipated. Some experts believe that water could be stored up to six months before needing to be replaced. Refrigeration will help slow the bacterial growth. # How long does it take a water supplier to produce one glass of drinking water? It could take up to 45 minutes to produce a single glass of drinking water. # How many community water systems are there in the U.S.? About 53,000 public water systems across the United States process 34 billion gallons of water per day for home and commercial use. Eighty-five percent of the population is served by these systems. # Which household activity wastes the most water? Most people would say the majority of water use comes from showering or washing dishes; however, toilet flushing is by far the largest single use of water in a home (accounting for 40% of total water use). Toilets use about 4 to 6 gallons per flush, so consider an ultra-low-flow (ULF) toilet, which requires only 1.5 gallons. #### **Test Results** Our water is monitored for many different kinds of contaminants on a very strict sampling schedule. The information below represents only those substances that were detected; our goal is to keep all detects below their respective maximum allowed levels. The State recommends monitoring for certain substances less often than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken. We participated in the 3rd stage of the EPA's Unregulated Contaminant Monitoring Rule (UCMR3) program by performing additional tests on our drinking water. UCMR3 benefits the environment and public health by providing the EPA with data on the occurrence of contaminants suspected to be in drinking water, in order to determine if the EPA needs to introduce new regulatory standards to improve drinking water quality. Contact us for more information on this program. | REGULATED SUBSTANCES | | | | | | | | | |--|-----------------|---------------|-----------------|----------------------------|-------------------|-----------|--|--| | SUBSTANCE
(UNIT OF MEASURE) | YEAR
SAMPLED | MCL
[MRDL] | MCLG
[MRDLG] | AMOUNT
DETECTED | RANGE
LOW-HIGH | VIOLATION | PLATION TYPICAL SOURCE | | | Chlorine (ppm) | 2016 | [4] | [4] | 0.33
(RAA) ¹ | 0.19-0.47 | No | Water additive used to control microbes | | | Fluoride (ppm) | 2016 | 4 | 4 | 0.41 | ND-0.41 | No | Erosion of natural deposits; Water additive that promotes strong teeth; Discharge from fertilizer and aluminum factories | | | Haloacetic Acids [HAAs] (ppb) | 2016 | 60 | NA | 0 | NA | No | By-product of drinking water disinfection | | | Nitrate (ppm) | 2016 | 10 | 10 | 1 | ND-1 | No | Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits | | | TTHMs [Total
Trihalomethanes] (ppb) | 2016 | 80 | NA | 6 | NA | No | By-product of drinking water disinfection | | | Tan water complex were callected for lead and conner engineer from complexities throughout the community | | | | | | | | | Tap water samples were collected for lead and copper analyses from sample sites throughout the community. | SUBSTANCE
(UNIT OF MEASURE) | YEAR
SAMPLED | AL | MCLG | AMOUNT
DETECTED
(90TH%TILE) | AL/TOTAL
SITES | VIOLATION | TYPICAL SOURCE | |--------------------------------|-----------------|-----|------|-----------------------------------|-------------------|-----------|--| | Copper (ppm) | 2014 | 1.3 | 1.3 | 0.23 | 0/20 | No | Corrosion of household plumbing systems; Erosion of natural deposits | | Lead (ppb) | 2014 | 15 | 0 | 2 | 0/20 | No | Corrosion of household plumbing systems; Erosion of natural deposits | | SECONDARY SUBSTANCES | | | | | | | | | | |--------------------------------|-----------------|------|------|--------------------|-------------------|-----------|--------------------------------|--|--| | SUBSTANCE
(UNIT OF MEASURE) | YEAR
SAMPLED | SMCL | MCLG | AMOUNT
DETECTED | RANGE
LOW-HIGH | VIOLATION | TYPICAL SOURCE | | | | Manganese (ppb) | 2014 | 50 | NA | 28.9 | 21.3–28.9 | No | Leaching from natural deposits | | | | UNREGULATED SUBSTANCES | | | | | | | | | | | UNREGULATED SUBSTANCES | | | | | | | | | |--------------------------------|-----------------|--------------------|-------------------|-----------------------------|--|--|--|--| | SUBSTANCE
(UNIT OF MEASURE) | YEAR
SAMPLED | AMOUNT
DETECTED | RANGE
LOW-HIGH | TYPICAL SOURCE | | | | | | Sodium (ppm) | 2016 | 17 | 10–17 | Erosion of natural deposits | | | | | | RULE - PART 3 (UCMR3) | | | | | | | | | |-----------------------------------|-----------------|--------------------|-------------------|--|--|--|--|--| | SUBSTANCE
(UNIT OF
MEASURE) | YEAR
SAMPLED | AMOUNT
DETECTED | RANGE
LOW-HIGH | | | | | | | Chromium-6 (ppb) | 2014 | 0.071 | 0.0513-0.071 | | | | | | | Strontium (ppb) | 2014 | 273 | 85.8–273 | | | | | | | Vanadium (ppb) | 2014 | 0.243 | 0.243-0.243 | | | | | | LINDECHI ATED CONTAMINANT MONITODING #### **Definitions** AL (Action Level): The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow. MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. NA: Not applicable **ND** (Not detected): Indicates that the substance was not found by laboratory analysis. **ppb** (parts per billion): One part substance per billion parts water (or micrograms per liter) **ppm (parts per million):** One part substance per million parts water (or milligrams per liter). SMCL (Secondary Maximum Contaminant Level): SMCLs are established to regulate the aesthetics of drinking water like appearance, taste and odor.